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Quantum time scales and the classical limit: Analytic results for some simple systems
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We set up a semiclassical approximation which helps us clarify by means of several simple examples the
rich variety of time scale in the quantum domain. The underlying structure of quantum and classical mechanics
is so completly different that it is naive to expect to reach a classical regime by counting powers of the
guantum scalé. We show although it is possible to define a time scale for nonclassical phenomena, but it is
impossible to characterize quantum dynamics through a unique time scale, such as Ehrenfest's time. We use
simple systems to critically discuss and illustrate these features of the quantum-classical limit.
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[. INTRODUCTION quantum regime of these point particles present several non-
classical phenomena, characterized by different time scales.
The dynamical behavior of point particles as described byWe derive and critically discuss all these time scales. It is
Newtonian mechanics is considerably altered when relativisworthwhile mentioning here that the spreading of wave
tic effects are included. The same is valid when one goepackets can be naturally accommodated in a classical context
over to a nonrelativistic quantum description. In the first caséf one is talking about classical probabilities as representative
(special relativity there exists an obvious parameter, light of the state of the particles. A precise discussion of this point
velocity, which, when compared to the velocities of the prob-can be found in Ref.1]. In the present contribution we con-
lem in question, naturally shows the way to recover Newton<ine ourselves to a comparison between Newtonian particles
ian dynamics, namely an expansion powervdt. In the  and their quantum counterpart when this exists.
second casé nonrelativistic quantum mechanjcte situa- In order to obtain time scales for the evolution of different
tion is far more comp.hca.ted. Although, since the early daysypservables and compare with their classical limit wherever
of Quantum Mechanics it became clear that quantum phegis can be defined, we construct a self-consistent expansion
nomena bear the imprint df, there is a new ingredient that ¢, e wave function of the system around a time dependent
IS not present in _the f|r§t case: the underlying quantum Kinez oherent statéor product of coherent staesvhose dynam-
mat|qs IS essentla!ly d|ffer.ent from 'that .Of .Newtoman Me-icsis completely given by the underlying classical equations
chanics whereas in special relativity this is not the case

Quantum and classical mechanics are two essentially dif'ferc-nc motion. In this way all next-to-leading order terms in the

ent theories both from the point of view of their underlying f;pans'?? alre Zssentl?jlly oflqua:jntu.mtcr:jaracter. For exartnp;:e,
kinematical construction and their dynamics. If quantum me- € next-o-leading order already Introduces an essentially

chanics should, as many of us expect, possess a univerdgfantum ingredient, i.e., a Iingar sgperposition pf guantum
character, it should be possible to derive classical mechanicates. Naturally, such correction will affect the time evolu-
from the corresponding quantum system. Many attempts iffon of observables to a lesser or greater extent, depending on
this direction have been put forward. One set of papers thdtoW sensitive the particular observakéed initial condition
deal with this question arfl-3]. In these references the IS to this correction.
authors assume the classical state to be a classical probability This paper is organized as follows: in Sec. Il we present
distribution by comparing with the corresponding quantumthe method, which is a generalization of Rfef] in order to
evolution. They show that Ehrenfest’s theorem is neitheinclude one degree of freedom systems. As an illustration of
necessary nor sufficient to characterize the classical regimée method, quantum and classical time scales are presented
in quantum theory. Therefore Ehrenfest’s theorem does ndbr the one-dimensional quartic oscillator. Section IIl con-
define the conditions for classical behavior. The time duringains a detailed analysis of the dynamics of the two-
which the first moments of the two distributions coincide isdimensional quartic oscillators, where typical entanglement
usually called Liouville time. The purpose of the presenttime scales are also obtained and compared with the Ehren-
work is somewhat complementary to the papers discussef@st time related to the time evolution of positions and mo-
above. We consider the case of a Newtonian particle whosmenta. We show that both depend ®nthey are quite dif-
state is given by a point in phase space. We show that thierent. Within the validity of the approximation we show that
Ehrenfest’s time is usually longer than entanglement time.
The reason for this becomes apparent in our approximation
*Electronic address: adelcio@fisica.ufmg.br scheme, where it is easy to see that the first nonvanishing
"Electronic address: carolina@fisica.ufmg.br correction to the Wigner function brings in entanglement,
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and measures of coherence content usually are more sensi- 4 1 9H i
tive to this aspect than mean values of one-body observables. —a=— —==—jwa—~ > m A, (a*)™ o,
dt |ﬁ aa* h m,n !
Il. THE APPROXIMATION SCHEME )
AND THE ONE-DIMENSIONAL d 1 9H i
QUARTIC OSCILLATOR — = S iwa* + - S nA, (o)L
m,n

dt ih Jda

Shortly after the birth of Ichanics, Sclitimger, proposed ' (5)
the idea of a coherent stdtg]. His motivation was the con-
struction of wave packets whose centers follow the motion ofOne possible quantum realization Idf, is given by
a classical point particle, while retaining their shapes, we
follow his idea closely. More recently another important de-
velopment which concerns coherent states was the recogni-
tion that coherent states are intimately connected to the dy-
namical group of the physical problem. For example, when e that( @|Fl | @) =Hg, if |@) is a coherent field state.
one mclgdes only creation, annihilation, identity, and number We will construct an expansion around a quantum opera-
conserving operator as generators, the system possesseslt&e H.(a(t)) which possess the following features)
Heisenberg-WeyH(4) dynamical group. There is then a ) . ~ )
natural correspondence with known geometrical propertie§“|HSC(“(t))_|a>=HC'S’ (b) ihdlit|a)=Hs{a(D))|a); (0)
[6]. The physical interpretation of the parameter space stru All expectation values opromt classical observables will be
ture for the system, and the equations of motion of the coPrecisely reproduced byis{«(t)) (including variances
herent state parameters precise|y Correspond to the C|assiéa]e construction of the semiclassical Hamiltonian is such
ones. For the above discussed reason we construct a serffiat it is completely determined by the classical equations of
classical expansion of the dynamical equation of a quanturiotion a(t) and its operator form is the following
system, where the zeroth-order approximation is the descrip- R o L R ~
tion with the minimum of the quantum ingredients and all He=fiwa'a+Bjsa'a+B;a’+B,a. (6)
classical ones. Typical quantum effects as spreading of wave
packets and superpositions are all contained only in higheYe show next how to construct such an operator. We start by
orders. We set up the approximation schemes for one degré&owing that if{a(t)) is a time dependent solution of Eq.
of freedom systemsclosed or not The generalization is (6), i.e.,

Ho=fiwa'a+ Y, Apq(@hman.
m,n

straightforward. 5
Let us consider a classical one degree of freedom Hamil- PRy
tonian of the form I at |a)=Hsde(t)]a),
2 - .
p it is necessary to verify that
Hcls:%"'v(Q)a 1
- ( LB, g 7
wherep stands for the particle momentum aqdor its po- dt“™ A h)CT R 0
sition. We perform the following change of variables:
B} i
a—a* a+a* aa*=l w+70 a*+%82. (8)
p=—F7—, 9=—F——, 2
i/ 2 \ /Zm“’ Next we further demand that Eqg) and(8) correspond
Mo f precisely to Egs(4) and(5), thus guaranteeing that the semi-
classical operator will be completely and soléhpart from a
wherew= Jk/m andk=d°V(q)/39?|4—o. phase given by the classical equations of motions. Thus we
The Hamiltonian can then be rewritten as require
Hys=fwa*a+U(a*a) (3) i

.[Bo [ _
—I(E)a—gBF—gz MAL (@)™ 1a", (9
with U(a* @) =V(q) —[k(a+ a*)/2malk ]2 e

It is now possible to writeH 5 in the form of a Taylor B* i i
expansion such i(—o ¥4 _By=— > NApa(a®)™" L (10
fi h h mmn '
Hos=fwa* a+% Ann(a®)ma", From the above equations we see that there exist several
Y I:|SC satisfying these conditions. In order to have uniqueness,
whereA; ;=0. we demand further that the operatars, a', anda obey an
The classical equations of motions read equation which is similar in structure to the classical one:
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d. i -
A= —im— — *\ym—1_n-1

dta lw ﬁ%mA'“’”(a )" a,
Eé"': iw+i_ nA (a*)m—lan—l é‘r
dt h m,n mn ’

The semiclassical Hamiltonian that satisfies this condition

is
H =% Ata *\ym—1_m—-1512
sc—hwa'a+ m Ay m(a®)" o™ "a'a
m#0

+ 2 mAm’n(a*)mflanéT
m#n

+>n Ann(a* )Ma""1a.
m,n

Note now that({a|HsJa)#Hgs, but this problem is
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Cd. . R
ih O=[0,A+[0,5].

In the interaction picture representation

t;\
Het")dt'

simple to solve. We only have to add constant terms, which

contributes an overall phase for the time evolved state

la(t)). Finally, we write
Heda()=hwa'at 2 m Ay n(a*)"?
Xa™ Y(ata—a* oz)erE’n A n(a@®)Ma"
2 m Ay (@) a"(@ - a")
+ % nAp (@) Ya—a). (12)

The full quantum time evolution can be formally written
ass

[W(1))=Ugdt)

1 1t
1+ EJOdtlAs(tl)

1

’ (ih)?

t
jo fo dt,dt,Ag(ty)Ag(ty)+- -+ || W(0)),
(12
where((t) = exp Mofsdt )t ang

A=01(1)80(t) and  S(a(t))=Hy—Hs(a(1)).
(13

A i A i ft.
O|:exp{—g . }Oexp{ +%fOHSC(t’)dt’].
(14)
We thus have
i (ta
AH(t)zexp[—gfoHsc(t’)dt’]
i (ta
X 8 exp{+gfoHsc(t’)dt’])
=U041)801(1) (15
and hence
d. A
|ﬁm0|:[0| ,AH]. (16)

Iterating Eq.(16), we get

. . Pt o 1)\2
e LU E WU

try - -
Xff [[On(1),Ap(ty, 1) ],Ay(ty, t)]dt,dty
oJo

(1 3t ty [ty . _
o h jofo fo [[LOn (1), An(ts. )],
A(tz, )] Ap(ty, D] dtgdtodty + - -, 17)
where
O0,()=01(1)0,(0)U1)
and

Ap(t, ) =000t 8(a(t)0I(t) Ogyt).

This expansion is not restricted to particle systems, but
can be used for spin systems or any system for which a
corresponding coherent representation exists. A generaliza-
tion of this scheme to nonautonomous systems is straightfor-
ward. An eventually classically chaotic dynamics is con-
tained in the zeroth order approximation of this expansion. It
is specially well suited for assessing the characteristic times

A similar expansion for the Heisenberg operator can bJor the manifestation of quantum effects in any observable.

written as

d. .
ih 5 O=[0,A].

Now writing H=H+ &, we have

A. An example: The quartic oscillator

Let us consider the following classical Hamiltonian:
k 2 m 2 k 2\ 2
q _(p_ L ka')®

p
as=om T2 TAloam T 2

2

H (18
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This system has been considered by several authors in the5(a(t)) = — \Mi2a* aata+ ME2(AN)2A%+ M2(a* )2a?.
context of classical limit of observabl¢g—11], and in spite
of its simplicity it has been used to explain some experimen- Since[ 5,A J=0=5=A,, then
tal results, see Ref12]. In what follows we present a critical vs H
review of these calculations, including also the time evolu- Ap=—2\h2a* aata+ak2(ah)2a2= pata+ n(ah)2az.
tion of the corresponding state.
Using the previous prescriptions, we can also write the The first terms of the semiclassical approximation for the

Hes as expectation value ofa)(t) are
Hys=fwa* a+\h?(a*)?a?. (19 (3% = ag(t)
— Ul ’
1. The classical solution t
The equations of motion of the model read (ah)= = (a®[[a,Ay]la®)=0,
d 1 chIs . . % 2 2
= — _ “ t PPN
GO TR g waTi2MaTas (@)=~ _(abtlun+2n@haraab)
d 1 Hys . =—2t%a(t)%n\?|a(0)|?
= = * *\2 )
qi® 7 om iwa™ +i2\h(a™) e,
. t3 SO
and the solution is then (a%y=———(a(t)|[n+2n(a")al®ala(t))

i6%°
a(t)=a(0)exp[ —iw—i2\ | a(0)|?]t}. (20) 8
=— —t3a(t)23\3 a(0)|2

2. The exact quantum solution 6i

According to the definition of:|q, we have It is easy to see that the summation to all orders will yield the
A o o exact result. The zeroth order contribution corresponds to the
H,=fiwa'a+\n%(a")%a (21)  classical evolution. The next-to-leading order allows us to

determine the Ehrenfest time
Using a coherent state as an initial condition we wish to
evaluate te~[AN|a(0)| V2] 1. (23

|qf(t)>:e*iﬁqt/ﬁ|a(o)>_ A few comments on the above expression are in order.
(a) The obtained expression for Ehrenfest’s time explicitly
In order to compare with the classical time evolution, wedepends on some kinematical ingredients e.g., the width of

evaluate(a)(t), given by the initial wave packet, which, of course, dependgiohis
h dependence is therefore of no fundamental significance.
(a)(t)=(a(0)|a(t)|a(0)). (b) The physical agent that produces the observed devia-
tion from the classical point particle behavior is the nonlin-
As can be easily checked, the full quantum solution is earity reflected in the constant which will tend to distort
the initial wave packet. This very same effect, however, is
(a)(t)= a(0)e " 1ote ()L -exp(-2itni)] (22)  also present in a classical probabilistic description. Therefore
in this sense it is at least ambiguous to call Ehrenfest’s time
3. The semiclassical solution a quantum time scale in the present context. This has been

L numerically verified[13] and an analytical expression for
In order to get a feel of for the approximation we devel- o, hectation values with the classical statistical wave packet
opedA we next use it to obtain a semiclassical approximatiory, presently under investigation.
for (a)(t). For this propose we write At this point and for this particular observable it is mean-
ingful to define a classical limit in a rigorous way. The am-
plitude of the coherent state/(0)|? is directly related to the
ratio of the classical action arfl This ratio may be used to
define a classical limit. Note then that upon substitution of
whereA; =% w, A,=\%2. According to the prescriptions of #|a(0)|2=S,, wereS, is the classical action of the system,

2
Hq: 2 Am(éT)mém,
m=1

this section beginning we get one gets the usually obtained Ehrenfest time weappears
and was interpreted in Refg7,8] as a quantum correction.
H=fowa'a+2\i2a* aa’a—\h2(a*)2a?. Note however that the result just obtained originated from
a perturbative expansidim the nonlinearity governed by the
According to its definition, Eq(13), we have parameter\). The expansion parameter to be considered
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is Mi|a|?<1 [see EQ.(22)]. Within this limit, the above C. First correction to the Wigner function
conclusions hold, as expected. for the quartic model

However, the same expansion while leading to the above o, Eq.(25) we can write the density operator as
result for the expectation value of an operator, shows differ-
ent time scales for the Wigner function. In particular we
show below that the characteristic time of the appearance of
guantum effects has a completely different dependende of

p(t)=psdt)+p(t) +p(t)+ . (27)
Then we have

B. Wigner differential equation for the one-dimensional model W() =Wl t) + WA(E) - WR(1) + - - - 28)

For the quartic one-dimensional oscillator we have the

following exact equation for the density:

p=—i[wa'a+\i(a’a)? p], (24)

wherew= w—\%. Then the corresponding Wigner function

obeys the following differential equation

. - N J
W(7)=—i(@+28N7|)| 7% — =5 W(7)
n n

i)\h( 7 - 7 )W( :
—— | —27 7).
2 Io"772(977* an*2an

The first correction is due to the first term of the expan-
sion, that is

A i [t .
pl(t)= Usg(t){ fli_f [P(O),As(tl)]dtl} Ol
0

= t00[p(0).A10L(1), 29

whereA = pa'a+27(a%)?a? andp(0)=|ag)(ao|. Then af-
ter some algebra we find

1 _ i * 2 *\222
p ()= t{|a)(e|[paf at27(af)®a’]

For the semiclassical expansion of the Wigner function

(zeroth order termwe find

Wdmi=ia| 7 S
sdm)=—lw| 7 - i sd 7).

where o= w+ 2\ | a(t)|?=w+ 2\ %] ag|?. Now we pro-
ceed to derive the corrections to the Wigner function accord-
ing to our approximation scheme. The semiclassical expan-

sion for the density operator is given by

pl(t)= Osc(t>[p(0>+ +[ro0) ast10n
3T T oo a0 Ao,
Sl oo A a1 a0
><dt3dt2dt1+~~]0§0(t), (25)

were we have defined

oty ’ ’ oty ’ ’
As=exp{%foHsc(t )dt }Aexpl—%fOHSL(t )dt ]

=0I(t)AU1). (26)

_[,U«aTat“‘277(£‘T)2(112]|at><01t|}: (30)

where a(t) is given by Eq.(20). The first Wigner term is
then

10\ — h N 2_ o2
W (v) t exp{4Rg v* o) — 2| a|*— 2| v|?}

T
XIm(2v%(af)?—4|al?af v). (31

The Wigner function of coherent state) is

2
Weo(v) = —exp{4Re(v* ay) = 2]ag|*~2[v[*}. (32

Then for the first order in time, we may approximaté)
as

a(t)=a(0)(1-iwt), (33)
wherew= w+2\%|a(0)|?.
Then the semiclassical Wigner [i$4]

2
Wi )= = expld Re(v* ag) — 2l ol 2s]?3)

X[1—4tw Im(vad)]. (34)

Note that the study of short times for the evolution of the
state is far more complicated than that for expectation values
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as shows the discussion below. In particular the first nonzerc
correction is of first order while that for the expectation val-
ues is of second order.

The validly of Eqg.(33) may depend on time and some
combination of parameters. Since the Wigner function of a
coherent state is always positive,

1—4twIm(vad)>0, ti.<[4wlm(vad)] >

. . . ., a0
In order to arrive at a simple expression, let us study its

short time behavior: Re &) Im( o)

FIG. 1. First order of the Wigner function for the quartic one-

2
W(v)=—exp{4 Re(v* ag) — 2| ao|*~ 2| v]?}
™ dimensional oscillatorx is dimensionless, see its definition Eg).
~ 2 2
X[1-4tw Im(vag) -8\ IM{20%(a) IIl. TWO COUPLED QUARTIC OSCILLATOR

—4|a|?af v}]. (35

In this section we discuss the time scale of another typical

quantum process, entanglement and its relatioh. tBor our

. Now we want to investigate if there are negative regions,  oses it suffices to consider a simple two-dimensional
in the Wigner function. Therefore we must have model, which is exactly soluble:

1— 4ty IM(vag) — 8ty i Im(207af 2— 4| al?af v) <0, 02 k2 p2 Kal
Ho=—e— —— <4 ¢
or equivalently, ““2m’ 2 ‘2m 2
. om( e ke P kg’
toc>—= > . ki2m 2 2m 2
4o Im(vad)+8Nh Im(2v%af °— 4] a|?af v)
. 2Mw ) 2
This is the characteristic time for the appearance of quan- tufiRe || Pt N 7 U TV mer P2

tum effects. It is surely smaller than the “Ehrenfest tinjef

Eq. (23)]. This means that the operator chosen is “blind” to
the particular correlations developed in the Wigner function
for short times. Then if we want to see interference terms we
should have,.<t;., so that

2Mmw
+ TQ2

By making analogous substitution as in the preceding sec-
tion we rewrite the classical Hamiltonian as

1

4o Im(vad)+8\h Im(2v2af 2~ 4|al?a v)

Has=ho(a* at B* B)+ i (o) 2a?+(B*)?B

<[4 Im(va¥)] "4, (36) +2a* af* Bl+ uh(a* B+ aB*). (39
and hence The classical solution is given by
8\7 Im(2v2af 2 — 4| al?af v)>0. (37
To satisfy this, we may have ;:: ;li{f;fiiﬁﬂﬁn
Im(1)>2 Im(a). (39) ‘m’ﬁﬁﬁ%

ﬁ tﬂ‘“‘\%}\\““‘%ﬁ
!

Therefore, negative regions will develop for short times in i -t
f"ﬁt‘%&}‘:ﬁi mﬂl“ i

phase space regions which satisfy the above condition, i.e.
mainly away from the center of the Gaussian.

The characteristic time for these quantum developments isso
rather intricate and it is therefore hard to characterize it only
in terms of#. In Figs. 1 and 2 we show the zeroth- and Re(x)
first-order Wigner functions for the parameters indicated in
the figure. Note that TEp')=0 showing thus unambigu- FIG. 2. Second order of the Wigner function for the quartic
ously that the characteristic time of the expectation value i$ne-dimensional oscillatorr is dimensionless, see its definition
rather different than that of the state. Eq. (2).

Im( cx)
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%(efi(QJr,u)t_i_e*i(Q*,u,)’[)

a(t)
B(t)

%(efi(QJr,u)t_e*i(Q*,u,)’[)

A. The semiclassical solution
Now H, is

2
Ay=fo(@'atbb)+ X Anyqahmam(bho"
m,n=0

+ufi(a’b+ab"),

WhereAlOZ AOl: 0 f AZO: A02: A11/2: )\ﬁz and A22: 0.

PHYSICAL REVIEW E 68, 036214 (2003

%(e*i(Q‘Fﬂ)I_e*i(Q*/A)t) ag
%(e—i(nm)ure—i(ﬂ—#)t) Bo ' (40
02 (t)=expli[ p(t)bT+bp* (t)]}exp —iQbTHt)
Xexp(—mft|p(t')|2dt’), (44)
0

and we have

t
¢(t)=MJOB(t’)dt’,

As before, we may write the semiclassical Hamiltonian as

H=%20(a'a+b™0)+uh[a*b+ab’+a’B+ap*]
—NZ[(a*)2a®+(B*)? B+ 2a* af* B]
—uh(a* B+ aB*).

According to Eq.(13) we get
s=N2[(a")2a?2+(b")2b2+2atab™0]+ uhi[abt+a'b]
—#iv[a’a+b'b]— uh[a*b+ab’+a'B+aB*]
+)\ﬁ2[(a*)2a2+(ﬂ*)2[32+2a* aB* B]

+ phi(a* B+aB*). (41

And the semiclassical time evolution operator is

~ t;\
Usc(t)zexp{—i/ﬁf Hsc(t’)dt’]

0

~ ~ t ~ ~
=exp(—iQaTat—i,uf [aTﬁ(t’)Jra,B*(t’)]dt’)
0
~ ~ t ~ ~
xexp(—inTbt—iMf[b*a(t')+ba*(t')]dt')
0

=02(1)0%1). (42)

t
0

¢<t>=uf o (1)t

We now have the parametegét) andp(t) that obey the
same differential equation asand g , respectively. But the
initial conditions are£(0)=p(0)=0.

We know that

Ogc(t)|a0> = | a'cls(t)> = I5(acls(t))|o>'

Then
02(t)D(ag) =D(agdt)).

(a(t)) = agd){1—2N12t2[|a(0)[2+| B(0) |21} + O(t3).

The Ehrenfest time, fop=0, is

te=[2\?%1%(|(0)|2+]B8(0)[?)] Y2=[2\242S,] V2
(45)

B. The linear entropy—quantum timescale and exact result

Now we will consider the following Hamiltonian:

Hy=%o(a'a+b'b)+1%%(a'a+b'b)?+ uh(ab+abh).
(46)

By using some Lie algebraic technique and the parameters

derivation technique we shall write

Ua(t)=expli[£(t)aT+as* (t)]}exp —iQa'at)

t
xex;{ —iﬂfo|§(t')|2dt'>,

(43

As we have[(afa+b'b),(a’b+ab")]=0, then we can
write the time evolution operator as

U(t)=exp{—itw(a’a+b'b)}

x exp{\h2(ata+b'h)? exp{ufi(atb+ab™)}.
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Now we will study the time evolution of a two- ! ' . ' '
dimensional coherent state under this Hamiltonian. The time
evolved state is given by

D(t)

|W(t))=exp{—itw(a’a+b'b)}exp—itak(ata+b'h)?} o °
X eXp[— |t,LL(éT6+ éE)T)H ao,B()).

But we know that

0 100 200 ( 2) 300 400 500
t

exp{—itM(éTfﬂ- éBT)}|a0aﬁo>: |at :Et>v

A
where a,= aocosut)—iBsin(ut) and By=—iagsin(ut) FIG. 3. The exact linear entrop§ull line) and the short time
+BOCOS(UI) Then with a few Steps of algebra|c Calculationslinear entropy(dotted |Iné for the quartiC two-dimensional har-

we may find monic oscillator.

The linear entropy is given b;&a=1—Tr(pi) and then

T S
V(1) =exp{~itw(a’a+b’b)} we need to evaluate the traceqdf. By making some simple

xexpl— itk (ata+bh)2 ey, By calculations we may find
_ a2 3 _ 2 o
e 4l e t nzm eXF{ |t)\ﬁ(n+m) } Tr[pi]:;] e 2| Bol eXﬂ2|a0|2{00$2t)\ﬁ2(n—q)]—1})
xﬁﬂ|n>|m>, (47) ><|/A3t|2n s 49
Jymt ynt Nl (49

where?ﬁ&te““ and B,=pBe . _ In order to obtain a typical time scale for this process we
By making the produgt¥ (t))(W(t)|, we find the follow-  expand the cosine in the exponent and sum all leading con-
ing density operator: tributions int?. The details of this laborious calculation are

given in the Appendix. The result is

p=elal’e B 3 exp{—itAA[(n+m)2—(p+q)2]}

n,m,p,q 5 1
a e s Tr(pg)~ : (50)
¢ B af iyl |m(pl V1+[4SEANSgdh ]
— — — —|n){q|®|m){p|.
Jmt \/E \/q—' Note that the entanglement time scale is very different
The reduced density operator for theliberty degree of T what we called Ehrenfest's time scale,
freedom is
t ! dt !
. . g% ————== and tpx
paze*|“t|2e*‘ﬁt|22 exp[—it)\ﬁ[mz—pz]} VS§|S+ Sels \/Sglsscls
p,m
~m % showing that if both actions? andS> increase in the same
Xexp{|&t|ze—2ithh(m—p)}ﬂ_‘ ﬂ|m>(p|, mannertp is much shorter thate . The same result can be
Jymt Vp! obtained by using Eq10) of Ref.[15]. In Fig. 3 we show

the exact result for Trc(i) and compare with the short time
where|m) and |p) are Fock states. Then the square of thepehavior. If we look at the density expansion for short time,
reduced density operator is we immediately see that the first correction term brings a
superposition of states and entanglement, i.e., the first term
. . in the expansion makes use of the quantum kinematics.
pi=e Aal’g=2lA? [exp{—it)\ﬁ[mz—nz]}
m,qg,n

IV. CLOSING REMARKS

" |2( a—2itAE(M—Q) —2itAi(q—n) . . X
X exp{| a|*(e +te )} In the present paper we set up a semiclassical approxima-

B |A 120 A tion which helped us clarify, by means of several simple
X 1B —t|m><n| . (48  examples, the rich variety of time scales in the quantum do-
Jmoat o nt main. This is one of the reasons why constructing a bridge
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between classical and quantum mechanics is so difficult. The Let
whole structure of both theories is completely different and
several nonclassical phenomena should be attributed to the

. . L Jd d
linear structure of the Hilbert space, a feature which is absent D =( ) ,
in the classical context. Application of this present develop-

ment in chaotic situations is in order.

a=|Bol%,
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APPENDIX De?S=ade?s

First we setw=0, then we geta,|?=|ao|%. We want to
extract thes independent contribution to Tpﬁ). For this D(g(s,d)e?5(=[adg(s,d) + D(g(s,d))]e?.
purpose it suffices to sum all contribution coming from the
second order of the expansion of the cosine function. Then The general result is theb"e*s=g"(s,d)e?, with
for the first order we find\°=0 then we have:

=] 9°%s,d)=1,
2tAA4(N—q
T p2]=2, e‘2ﬁ0|2exp[2 a2 D, — e —2m+2
P q.n | 0| m=0 (2m+2)' gl(S,d):ad,
| Bol®™ | Bol*
X q! g°(s,d)=a%d’+as,
= e 2Pol’ex] — 4| ag| A2\ 2h4(n—)?] g%(s,d)=a3%d®+3a’ds+ad,
q,n
><Iﬁol2n | Bol* 9%(s,00=0,

n! ql

4 —~444 342 242 22
Let us examinee the following function: g'(s,d)=a"d"+6a’d’s+4a’d"+3a’s"+as,

xa)"(ya)P
f(X,y) — 2 % — e(x+y)a_
n.p n:p: If we only consider the smallest term in power fofat
each application of the operatDr we can obtain an approxi-

If we apply once the differential operatord/dx—ya/ay) mated linear entropy. As we will see, this will give us &n

we find independent linear entropy. By doing this we have
(Xi—yi) f(xy) =a(x=y) (). g%(s,d)~a’d*+6a’d’s+3a’s",
ax ay
Then we can see that 95(s,d)~a%d®+ 10a*d3s+ 15a°d s,
I _ 9 -y (n—p)(xa)"(ya)® 9%(s,d)~a’d®+ 15a°d*s+ 45a*d?s?+ 15a°s°,

_a(x—y)elx+va, g’(s,d)~a’d’+21a%d°s+ 105a°d3s? + 105asd,

So fora=|B,|% we get 98(s,d)~afd®+ 28a’d®s+210a°d*s?+ 420a°s°d?

44
5 (=P 1B (180l +10%a%s

np n!p!

=2 232|130|2.
[Bal Forx=y=1 we can see that
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g°%(s,d)y=1=01!1(2a)°,
g%(2,0=2a=1!!(2a)*,

9%(2,0~3(2a)?=3!1(2a)?,
g%(2,0~5!1(2a)3,

g8(2,0~=711(2a)%.

Then we find

D (N=p)?™(| Bo|?)"(| Bol)P

n.p nip!

~(2m—1)!1(2] Bo|2)"e? #ol’,

PHYSICAL REVIEW B8, 036214 (2003

For the trace we get
Tr(p2)=>, e ol ex — 4] a2\ 24 (n- )]
qg,n

| Bol?" | Bol

x n! q!

“ (2k—1)!!

~14 X (2| agthi?Bo )
Kk !

As (1+u) Y2=1-111u/112+311/2!1(u/2)?+ - - -, then
finally we get

1 1

Tr(p3)~

Vi+ 4] agthfi?By|? \/1+ 4|SAL2h2N2SY
(A1)
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