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Quantum time scales and the classical limit: Analytic results for some simple systems
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We set up a semiclassical approximation which helps us clarify by means of several simple examples the
rich variety of time scale in the quantum domain. The underlying structure of quantum and classical mechanics
is so completly different that it is naive to expect to reach a classical regime by counting powers of the
quantum scale\. We show although it is possible to define a time scale for nonclassical phenomena, but it is
impossible to characterize quantum dynamics through a unique time scale, such as Ehrenfest’s time. We use
simple systems to critically discuss and illustrate these features of the quantum-classical limit.
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I. INTRODUCTION

The dynamical behavior of point particles as described
Newtonian mechanics is considerably altered when relati
tic effects are included. The same is valid when one g
over to a nonrelativistic quantum description. In the first ca
~special relativity! there exists an obvious parameter, lig
velocity, which, when compared to the velocities of the pro
lem in question, naturally shows the way to recover Newt
ian dynamics, namely an expansion power ofv/c. In the
second case~ nonrelativistic quantum mechanics! the situa-
tion is far more complicated. Although, since the early da
of Quantum Mechanics it became clear that quantum p
nomena bear the imprint of\, there is a new ingredient tha
is not present in the first case: the underlying quantum k
matics is essentially different from that of Newtonian m
chanics whereas in special relativity this is not the ca
Quantum and classical mechanics are two essentially di
ent theories both from the point of view of their underlyin
kinematical construction and their dynamics. If quantum m
chanics should, as many of us expect, possess a univ
character, it should be possible to derive classical mecha
from the corresponding quantum system. Many attempt
this direction have been put forward. One set of papers
deal with this question are@1–3#. In these references th
authors assume the classical state to be a classical proba
distribution by comparing with the corresponding quantu
evolution. They show that Ehrenfest’s theorem is neit
necessary nor sufficient to characterize the classical reg
in quantum theory. Therefore Ehrenfest’s theorem does
define the conditions for classical behavior. The time dur
which the first moments of the two distributions coincide
usually called Liouville time. The purpose of the prese
work is somewhat complementary to the papers discus
above. We consider the case of a Newtonian particle wh
state is given by a point in phase space. We show that
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quantum regime of these point particles present several n
classical phenomena, characterized by different time sca
We derive and critically discuss all these time scales. I
worthwhile mentioning here that the spreading of wa
packets can be naturally accommodated in a classical con
if one is talking about classical probabilities as representa
of the state of the particles. A precise discussion of this po
can be found in Ref.@1#. In the present contribution we con
fine ourselves to a comparison between Newtonian parti
and their quantum counterpart when this exists.

In order to obtain time scales for the evolution of differe
observables and compare with their classical limit where
this can be defined, we construct a self-consistent expan
for the wave function of the system around a time depend
coherent state~or product of coherent states!, whose dynam-
ics is completely given by the underlying classical equatio
of motion. In this way all next-to-leading order terms in th
expansion are essentially of quantum character. For exam
the next-to-leading order already introduces an essent
quantum ingredient, i.e., a linear superposition of quant
states. Naturally, such correction will affect the time evo
tion of observables to a lesser or greater extent, dependin
how sensitive the particular observable~and initial condition!
is to this correction.

This paper is organized as follows: in Sec. II we pres
the method, which is a generalization of Ref.@4# in order to
include one degree of freedom systems. As an illustration
the method, quantum and classical time scales are prese
for the one-dimensional quartic oscillator. Section III co
tains a detailed analysis of the dynamics of the tw
dimensional quartic oscillators, where typical entanglem
time scales are also obtained and compared with the Eh
fest time related to the time evolution of positions and m
menta. We show that both depend on\, they are quite dif-
ferent. Within the validity of the approximation we show th
Ehrenfest’s time is usually longer than entanglement tim
The reason for this becomes apparent in our approxima
scheme, where it is easy to see that the first nonvanish
correction to the Wigner function brings in entangleme
©2003 The American Physical Society14-1
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and measures of coherence content usually are more s
tive to this aspect than mean values of one-body observa

II. THE APPROXIMATION SCHEME
AND THE ONE-DIMENSIONAL

QUARTIC OSCILLATOR

Shortly after the birth of lchanics, Schro¨dinger, proposed
the idea of a coherent state@5#. His motivation was the con
struction of wave packets whose centers follow the motion
a classical point particle, while retaining their shapes,
follow his idea closely. More recently another important d
velopment which concerns coherent states was the reco
tion that coherent states are intimately connected to the
namical group of the physical problem. For example, wh
one includes only creation, annihilation, identity, and num
conserving operator as generators, the system possess
Heisenberg-WeylH(4) dynamical group. There is then
natural correspondence with known geometrical proper
@6#. The physical interpretation of the parameter space st
ture for the system, and the equations of motion of the
herent state parameters precisely correspond to the clas
ones. For the above discussed reason we construct a s
classical expansion of the dynamical equation of a quan
system, where the zeroth-order approximation is the desc
tion with the minimum of the quantum ingredients and
classical ones. Typical quantum effects as spreading of w
packets and superpositions are all contained only in hig
orders. We set up the approximation schemes for one de
of freedom systems~closed or not!. The generalization is
straightforward.

Let us consider a classical one degree of freedom Ha
tonian of the form

Hcls5
p2

2m
1V~q!, ~1!

wherep stands for the particle momentum andq for its po-
sition. We perform the following change of variables:

p5
a2a*

iA 2

mv\

, q5
a1a*

A2mv

\

, ~2!

wherev5Ak/m andk5]2V(q)/]q2uq50.
The Hamiltonian can then be rewritten as

Hcls5\va* a1U~a* a! ~3!

with U(a* a)5V(q)2@k(a1a* )/A2mv/\#2.
It is now possible to writeHcls in the form of a Taylor

expansion such

Hcls5\va* a1(
m,n

Am,n~a* !man,

whereA1,150.
The classical equations of motions read
03621
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d

dt
a5

1

i\

]Hcls

]a*
52 iva2

i

\ (
m,n

m Am,n~a* !m21an,

~4!

d

dt
a* 52

1

i\

]Hcls

]a
5 iva* 1

i

\ (
m,n

n Am,n~a* !man21.

~5!

One possible quantum realization ofHcls is given by

Ĥq5\vâ†â1(
m,n

Am,n~ â†!mân.

Note that̂ auĤqua&5Hcls, if ua& is a coherent field state
We will construct an expansion around a quantum ope

tor Hsc„a(t)… which possess the following features~a!

^auHsc(a(t))ua&5Hcls; ~b! i\]/]tua&5Ĥsc(a(t))ua&; ~c!
All expectation values of point classical observables will
precisely reproduced byĤsc(a(t)) ~including variances!.
The construction of the semiclassical Hamiltonian is su
that it is completely determined by the classical equations
motion acl(t) and its operator form is the following

Ĥsc5\vâ†â1B0â†â1B1â†1B2â. ~6!

We show next how to construct such an operator. We star
showing that ifua(t)& is a time dependent solution of Eq
~6!, i.e.,

i\
]

]t
ua&5Ĥsc„a~ t !…ua&,

it is necessary to verify that

d

dt
a52 i S v1

B0

\ Da2
i

\
B1 , ~7!

d

dt
a* 5 i S v1

B0*

\ Da* 1
i

\
B2 . ~8!

Next we further demand that Eqs.~7! and ~8! correspond
precisely to Eqs.~4! and~5!, thus guaranteeing that the sem
classical operator will be completely and solely~apart from a
phase! given by the classical equations of motions. Thus
require

2 i S B0

\ Da2
i

\
B152

i

\ (
m,n

mAm,n~a* !m21an, ~9!

i S B0*

\ Da* 1
i

\
B25

i

\ (
m,n

n Am,n~a* !man21. ~10!

From the above equations we see that there exist sev
Ĥsc satisfying these conditions. In order to have uniquene
we demand further that the operatorsâ†â, â†, andâ obey an
equation which is similar in structure to the classical one
4-2
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d

dt
â5S 2 iv2

i

\ (
m,n

m Am,n~a* !m21an21D â,

d

dt
â†5S iv1

i

\ (
m,n

n Am,n~a* !m21an21D â†.

The semiclassical Hamiltonian that satisfies this condit
is

Ĥsc5\vâ†â1 (
mÞ0

m Am,m~a* !m21am21â†â

1 (
mÞn

m Am,n~a* !m21an â†

1(
m,n

n Am,n~a* !man21â.

Note now that ^auĤscua&ÞHcls, but this problem is
simple to solve. We only have to add constant terms, wh
contributes an overall phase for the time evolved st
ua(t)&. Finally, we write

Ĥsc„a~ t !…5\vâ†â1 (
mÞ0

m Am,m~a* !m21

3am21~ â†â2a* a!1(
m,n

Am,n~a* !man

1 (
mÞn

m Am,n~a* !m21an~ â†2a* !

1(
m,n

n Am,n~a* !man21~ â2a!. ~11!

The full quantum time evolution can be formally writte
ass

uC~ t !&5Ûsc~ t !S 11
1

i\E0

t

dt1Ds~ t1!

1
1

~ i\!2E0

tE
0

t1
dt2dt2Ds~ t1!Ds~ t2!1••• D uC~0!&,

~12!

whereÛsc(t)5exp2i/\*0
t Ĥsc(t8)dt8 and

Ds5Ûsc
† ~ t !dÛsc~ t ! and d„a~ t !…5Ĥq2Ĥsc„a~ t !….

~13!

A similar expansion for the Heisenberg operator can
written as

i\
d

dt
Ô5@Ô,Ĥ#.

Now writing Ĥ5Ĥsc1d, we have
03621
n

h
e

e

i\
d

dt
Ô5@Ô,Ĥsc#1@Ô,d#.

In the interaction picture representation

ÔI5expH 2
i

\E0

t

Ĥsc~ t8!dt8J ÔexpH 1
i

\E0

t

Ĥsc~ t8!dt8J .

~14!

We thus have

DH~ t !5expH 2
i

\E0

t

Ĥsc~ t8!dt8J
3dS expH 1

i

\E0

t

Ĥsc~ t8!dt8J D
5Ûsc~ t !dÛsc

† ~ t ! ~15!

and hence

i\
d

dt
ÔI5@ÔI ,DH#. ~16!

Iterating Eq.~16!, we get

ÔI~ t !5ÔII~ t !2
i

\E0

t

@ÔII~ t !,D̃H~ t1 ,t !#dt12S 1

\ D 2

3E
0

tE
0

t1
@@ÔII~ t !,D̃H~ t2 ,t !#,D̃H~ t1 ,t !#dt2dt1

1 i S 1

\ D 3E
0

tE
0

t1E
0

t2
@†@ÔII~ t !,D̃H~ t3 ,t !#,

D̃H~ t2 ,t !‡,D̃H~ t1 ,t !]dt3dt2dt11•••, ~17!

where

ÔII~ t !5Ûsc
† ~ t !ÔI~0!Ûsc~ t !

and

D̃H~ t i ,t !5Ûsc
† ~ t !Ûsc~ t i !d„a~ t i !…Ûsc

† ~ t i !Ûsc~ t !.

This expansion is not restricted to particle systems,
can be used for spin systems or any system for whic
corresponding coherent representation exists. A genera
tion of this scheme to nonautonomous systems is straigh
ward. An eventually classically chaotic dynamics is co
tained in the zeroth order approximation of this expansion
is specially well suited for assessing the characteristic tim
for the manifestation of quantum effects in any observab

A. An example: The quartic oscillator

Let us consider the following classical Hamiltonian:

Hcls5
p2

2m
1

kq2

2
1l

m

k S p2

2m
1

kq2

2 D 2

. ~18!
4-3
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This system has been considered by several authors in
context of classical limit of observables@7–11#, and in spite
of its simplicity it has been used to explain some experim
tal results, see Ref.@12#. In what follows we present a critica
review of these calculations, including also the time evo
tion of the corresponding state.

Using the previous prescriptions, we can also write
Hcls as

Hcls5\va* a1l\2~a* !2a2. ~19!

1. The classical solution

The equations of motion of the model read

d

dt
a5

1

i\

]Hcls

]a*
52 iva2 i2l\a* a2,

d

dt
a* 52

1

i\

]Hcls

]a
5 iva* 1 i2l\~a* !2a,

and the solution is then

a~ t !5a~0!exp$@2 iv2 i2l\ua~0!u2#t%. ~20!

2. The exact quantum solution

According to the definition ofĤq , we have

Ĥq5\vâ†â1l\2~ â†!2â2. ~21!

Using a coherent state as an initial condition we wish
evaluate

uC~ t !&5e2 iĤ qt/\ua~0!&.

In order to compare with the classical time evolution, w
evaluatê â&(t), given by

^â&~ t !5^a~0!uâ~ t !ua~0!&.

As can be easily checked, the full quantum solution is

^â&~ t !5a~0!e2 ivte2ua(0)u2[12exp(22i tl\)] . ~22!

3. The semiclassical solution

In order to get a feel of for the approximation we dev
oped we next use it to obtain a semiclassical approxima
for ^â&(t). For this propose we write

Ĥq5 (
m51

2

Am~ â†!mâm,

whereA15\v, A25l\2. According to the prescriptions o
this section beginning we get

Ĥsc5\vâ†â12l\2a* aâ†â2l\2~a* !2a2.

According to its definition, Eq.~13!, we have
03621
he

-

-

e

o

n

d~a~ t !!522l\2a* aâ†â1l\2~ â†!2â21l\2~a* !2a2.

Since@d,Ĥsc#50⇒d5DH , then

DH522l\2a* aâ†â1l\2~ â†!2â25mâ†â1h~ â†!2â2.

The first terms of the semiclassical approximation for t
expectation value of̂â&(t) are

^â0&5acl~ t !,

^â1&5
t

i\
^a~ t !u@ â,DH#ua~ t !&50,

^â2&52
t2

2\2
^a~ t !tu@m12h~ â†!â#2âua~ t !&

522t2a~ t !\2l2ua~0!u2,

^â3&52
t3

i6\3
^a~ t !u@m12h~ â†!â#3âua~ t !&

52
8

6i
t3a~ t !\3l3ua~0!u2.

It is easy to see that the summation to all orders will yield
exact result. The zeroth order contribution corresponds to
classical evolution. The next-to-leading order allows us
determine the Ehrenfest time

tE;@\lua~0!uA2#21. ~23!

A few comments on the above expression are in ord
~a! The obtained expression for Ehrenfest’s time explici
depends on some kinematical ingredients e.g., the width
the initial wave packet, which, of course, depends on\. This
\ dependence is therefore of no fundamental significanc

~b! The physical agent that produces the observed de
tion from the classical point particle behavior is the nonl
earity reflected in the constantl, which will tend to distort
the initial wave packet. This very same effect, however,
also present in a classical probabilistic description. Theref
in this sense it is at least ambiguous to call Ehrenfest’s t
a quantum time scale in the present context. This has b
numerically verified@13# and an analytical expression fo
expectation values with the classical statistical wave pac
is presently under investigation.

At this point and for this particular observable it is mea
ingful to define a classical limit in a rigorous way. The am
plitude of the coherent stateua(0)u2 is directly related to the
ratio of the classical action and\. This ratio may be used to
define a classical limit. Note then that upon substitution
\ua(0)u25Scl , wereScl is the classical action of the system
one gets the usually obtained Ehrenfest time were\ appears
and was interpreted in Refs.@7,8# as a quantum correction.

Note however that the result just obtained originated fr
a perturbative expansion~in the nonlinearity governed by th
parameterl). The expansion parameter to be conside
4-4
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is l\uau2!1 @see Eq.~22!#. Within this limit, the above
conclusions hold, as expected.

However, the same expansion while leading to the ab
result for the expectation value of an operator, shows dif
ent time scales for the Wigner function. In particular w
show below that the characteristic time of the appearanc
quantum effects has a completely different dependence o\.

B. Wigner differential equation for the one-dimensional model

For the quartic one-dimensional oscillator we have
following exact equation for the density:

ṙ52 i @vâ†â1l\~ â†â!2,r#, ~24!

wherev5v2l\. Then the corresponding Wigner functio
obeys the following differential equation

Ẇ~h!52 i ~ṽ12\luhu2!S h*
]

h*
2h

]

]h D W~h!

2
il\

2 S h
]3

]h2]h*
22h*

]3

]h* 2]h
D W~h!.

For the semiclassical expansion of the Wigner funct
~zeroth order term! we find

Ẇsc~h!52 i ṽS h*
]

h*
2h

]

]h D Wsc~h!,

where ṽ5v12l\ua(t)u25v12l\ua0u2. Now we pro-
ceed to derive the corrections to the Wigner function acco
ing to our approximation scheme. The semiclassical exp
sion for the density operator is given by

r~ t !5Ûsc~ t !H r~0!1
i

\E0

t

@r~0!,Ds~ t1!#dt1

2S 1

\ D 2E
0

tE
0

t1
†@r~0!,Ds~ t2!#,Ds~ t1!‡dt2dt1

2 i S 1

\ D 3E
0

tE
0

t1E
0

t2
@†@r~0!,Ds~ t3!#,Ds~ t2!‡,Ds~ t1!#

3dt3dt2dt11•••J Ûsc
† ~ t !, ~25!

were we have defined

Ds5expH i

\E0

t

Ĥsc~ t8!dt8J DexpH 2
i

\E0

t

Ĥsc~ t8!dt8J
5Ûsc

† ~ t !DÛsc~ t !. ~26!
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C. First correction to the Wigner function
for the quartic model

From Eq.~25! we can write the density operator as

r~ t !5rsc~ t !1r1~ t !1r2~ t !1•••. ~27!

Then we have

W~ t !5Wsc~ t !1W1~ t !1W2~ t !1•••. ~28!

The first correction is due to the first term of the expa
sion, that is

r1~ t !5Ûsc~ t !H i

\E0

t

@r~0!,Ds~ t1!#dt1J Ûsc
† ~ t !

5
i

\
tÛsc~ t !@r~0!,D#Ûsc

† ~ t !, ~29!

whereD5mâ†â12h(â†)2â2 andr(0)5ua0&^a0u. Then af-
ter some algebra we find

r1~ t !5
i

\
t$ua t&^a tu@ma t* â12h~a t* !2â2#

2@mâ†a t12h~ â†!2a t
2#ua t&^a tu%, ~30!

wherea(t) is given by Eq.~20!. The first Wigner term is
then

W1~n!5
216l\

p
t exp$4Re~n* a t!22ua tu222unu2%

3Im~2n2~a t* !224uau2a t* n!. ~31!

The Wigner function of coherent stateua& is

Wsc~n!5
2

p
exp$4Re~n* a t!22ua0u222unu2%. ~32!

Then for the first order in time, we may approximatea(t)
as

a~ t !5a~0!~12 i ṽt !, ~33!

whereṽ5v12l\ua(0)u2.
Then the semiclassical Wigner is@14#

Wsc~n!5
2

p
exp$4 Re~n* a0!22ua0u222unu2%

3@124tṽ Im~na0* !#. ~34!

Note that the study of short times for the evolution of t
state is far more complicated than that for expectation val
4-5
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as shows the discussion below. In particular the first nonz
correction is of first order while that for the expectation v
ues is of second order.

The validly of Eq. ~33! may depend on time and som
combination of parameters. Since the Wigner function o
coherent state is always positive,

124tṽ Im~na0* !@0, t1c!@4ṽ Im~na0* !#21.

In order to arrive at a simple expression, let us study
short time behavior:

W~n!.
2

p
exp$4 Re~n* a0!22ua0u222unu2%

3@124tṽ Im~na0* !28tl\ Im$2n2~a t* !2

24uau2a t* n%#. ~35!

Now we want to investigate if there are negative regio
in the Wigner function. Therefore we must have

124t2cṽ Im~na0* !28t2cl\ Im~2n2a t*
224uau2a t* n!,0,

or equivalently,

t2c.
1

4ṽ Im~na0* !18l\ Im~2n2a t*
224uau2a t* n!

.

This is the characteristic time for the appearance of qu
tum effects. It is surely smaller than the ‘‘Ehrenfest time’’@cf
Eq. ~23!#. This means that the operator chosen is ‘‘blind’’
the particular correlations developed in the Wigner funct
for short times. Then if we want to see interference terms
should havet2c,t1c , so that

1

4ṽ Im~na0* !18l\ Im~2n2a t*
224uau2a t* n!

!@4ṽ Im~na0* !#21, ~36!

and hence

8l\ Im~2n2a t*
224uau2a t* n!@0. ~37!

To satisfy this, we may have

Im~n!@2 Im~a!. ~38!

Therefore, negative regions will develop for short times
phase space regions which satisfy the above condition,
mainly away from the center of the Gaussian.

The characteristic time for these quantum developmen
rather intricate and it is therefore hard to characterize it o
in terms of \. In Figs. 1 and 2 we show the zeroth- an
first-order Wigner functions for the parameters indicated
the figure. Note that Tr(ar1)50 showing thus unambigu
ously that the characteristic time of the expectation valu
rather different than that of the state.
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III. TWO COUPLED QUARTIC OSCILLATOR

In this section we discuss the time scale of another typ
quantum process, entanglement and its relation to\. For our
purposes it suffices to consider a simple two-dimensio
model, which is exactly soluble:

Hcls5
p1

2

2m
1

kq1
2

2
1

p2
2

2m
1

kq2
2

2

1l
m

k S p1
2

2m
1

kq1
2

2
1

p2
2

2m
1

kq2
2

2 D 2

1m\ ReF S iA 2

mv\
p11A2mv

\
q1D S iA 2

mv\
p2

1A2mv

\
q2D G .

By making analogous substitution as in the preceding s
tion we rewrite the classical Hamiltonian as

Hcls5\v~a* a1b* b!1l\2@~a* !2a21~b* !2b2

12a* ab* b#1m\~a* b1ab* !. ~39!

The classical solution is given by

FIG. 1. First order of the Wigner function for the quartic on
dimensional oscillator.a is dimensionless, see its definition Eq.~2!.

FIG. 2. Second order of the Wigner function for the quar
one-dimensional oscillator.a is dimensionless, see its definitio
Eq. ~2!.
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Fa~ t !

b~ t !
G5F 1

2 ~e2 i (V1m)t1e2 i (V2m)t! 1
2 ~e2 i (V1m)t2e2 i (V2m)t!

1
2 ~e2 i (V1m)t2e2 i (V2m)t! 1

2 ~e2 i (V1m)t1e2 i (V2m)t!
G Fa0

b0
G . ~40!
a

te
A. The semiclassical solution

Now Ĥq is

Ĥq5\v~ â†â1b̂†b̂!1 (
m,n50

2

Am,n~ â†!mâm~ b̂†!nb̂n

1m\~ â†b̂1âb̂†!,

whereA105A0150, A205A025A11/25l\2 andA2250.
As before, we may write the semiclassical Hamiltonian

Ĥsc5\V~ â†â1b̂†b̂!1m\@a* b̂1ab̂†1â†b1âb* #

2l\2@~a* !2a21~b* !2b212a* ab* b#

2m\~a* b1ab* !.

According to Eq.~13! we get

d5l\2@~ â†!2â21~ b̂†!2b̂212â†âb̂†b̂#1m\@ âb̂†1â†b̂#

2\n@ â†â1b̂†b̂#2m\@a* b̂1ab̂†1â†b1âb* #

1l\2@~a* !2a21~b* !2b212a* ab* b#

1m\~a* b1ab* !. ~41!

And the semiclassical time evolution operator is

Ûsc~ t !5expH 2 i /\E
0

t

Ĥsc~ t8!dt8J
5expS 2 iVâ†ât2 imE

0

t

@ â†b~ t8!1âb* ~ t8!#dt8D
3expS 2 iVb̂†b̂t2 imE

0

t

@ b̂†a~ t8!1b̂a* ~ t8!#dt8D
5Ûsc

a ~ t !Ûsc
b ~ t !. ~42!

By using some Lie algebraic technique and the parame
derivation technique we shall write

Ûsc
a ~ t !5exp$ i @j~ t !â†1âj* ~ t !#%exp~2 iVâ†ât !

3expS 2 iVE
0

t

uj~ t8!u2dt8D , ~43!
03621
s

rs

Ûsc
b ~ t !5exp$ i @r~ t !b̂†1b̂r* ~ t !#%exp~2 iVb̂†b̂t !

3expS 2 iVE
0

t

ur~ t8!u2dt8D , ~44!

and we have

f~ t !5mE
0

t

b~ t8!dt8,

c~ t !5mE
0

t

a* ~ t8!dt8.

We now have the parametersj(t) andr(t) that obey the
same differential equation asa andb , respectively. But the
initial conditions arej(0)5r(0)50.

We know that

Ûsc
a ~ t !ua0&5uacls~ t !&5D̂„acls~ t !…u0&.

Then

Ûsc
a ~ t !D̂~a0!5D̂„acls~ t !….

^â~ t !&5acls~ t !$122l2\2t2@ ua~0!u21ub~0!u2#%1O~ t3!.

The Ehrenfest time, form50, is

tE.@2l2\4~ ua~0!u21ub~0!u2!#21/25@2l2\2Scls#
21/2

~45!

B. The linear entropy—quantum timescale and exact result

Now we will consider the following Hamiltonian:

Ĥq5\ṽ~ â†â1b̂†b̂!1l\2~ â†â1b̂†b̂!21m\~ â†b̂1âb̂†!.

~46!

As we have@(â†â1b̂†b̂),(â†b̂1âb̂†)#50, then we can
write the time evolution operator as

Û~ t !5exp$2 i t ṽ~ â†â1b̂†b̂!%

3exp$l\2~ â†â1b̂†b̂!2%exp$m\~ â†b̂1âb̂†!%.
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Now we will study the time evolution of a two
dimensional coherent state under this Hamiltonian. The t
evolved state is given by

uC~ t !&5exp$2 i t ṽ~ â†â1b̂†b̂!%exp$2 i tl\~ â†â1b̂†b̂!2%

3exp$2 i tm~ â†b̂1âb̂†!%ua0 ,b0&.

But we know that

exp$2 i tm~ â†b̂1âb̂†!%ua0 ,b0&5uã t ,b̃ t&,

where ã t5a0cos(mt)2ib0sin(mt) and b̃ t52 ia0sin(mt)
1b0cos(mt). Then with a few steps of algebraic calculatio
we may find

uC~ t !&5exp$2 i t ṽ~ â†â1b̂†b̂!%

3exp$2 i tl\~ â†â1b̂†b̂!2%uã t ,b̃ t&

5e2ua t̂u
2/2e2ub̂ tu

2/2 (
n,m

exp$2 i tl\~n1m!2%

3
b̂ t

m

Am!

â t
n

An!
un&um&, ~47!

wherea t̃5â te
2ṽ and b̂ t5b̃ te

2 i t ṽ.
By making the productuC(t)&^C(t)u, we find the follow-

ing density operator:

r5e2uâ tu
2
e2ub̂ tu

2

(
n,m,p,q

exp$2 i tl\@~n1m!22~p1q!2#%

3
b̂ t

m

Am!

â t
n

An!

b̂ t
p

Ap!

â t
q

Aq!
un&^qu ^ um&^pu.

The reduced density operator for thea liberty degree of
freedom is

ra5e2uâ tu
2
e2ub̂ tu

2

(
p,m

exp$2 i tl\@m22p2#%

3exp$uâ tu2e22i tl\(m2p)%
b̂ t

m

Am!

b̂ t
p

Ap!
um&^pu,

where um& and up& are Fock states. Then the square of t
reduced density operator is

ra
25e22uâ tu

2
e22ub̂ tu

2

(
m,q,n

H exp$2 i tl\@m22n2#%

3exp$uâ tu2~e22i tl\(m2q)1e22i tl\(q2n)!%

3
b̂ t

m

Am!

ub̂ tu2q

q!

b̂ t
n

An!
um&^nuJ . ~48!
03621
e

e

The linear entropy is given byDa512Tr(ra
2) and then

we need to evaluate the trace ofra
2 . By making some simple

calculations we may find

Tr@ra
2 #5(

q,n
e22ub0u2exp„2ua0u2$cos@2tl\2~n2q!#21%…

3
ub̂ tu2n

n!

ub̂ tu2q

q!
. ~49!

In order to obtain a typical time scale for this process
expand the cosine in the exponent and sum all leading c
tributions in t2. The details of this laborious calculation a
given in the Appendix. The result is

Tr~ra
2 !'

1

A11u4Scls
a t2l2Scls

b \2u
. ~50!

Note that the entanglement time scale is very differ
from what we called Ehrenfest’s time scale,

tE}
1

AScls
a 1Scls

b
and tD}

1

AScls
a Scls

b

showing that if both actionsScls
a andScls

b increase in the same
manner,tD is much shorter thantE . The same result can b
obtained by using Eq.~10! of Ref. @15#. In Fig. 3 we show
the exact result for Tr(ra

2) and compare with the short tim
behavior. If we look at the density expansion for short tim
we immediately see that the first correction term brings
superposition of states and entanglement, i.e., the first t
in the expansion makes use of the quantum kinematics.

IV. CLOSING REMARKS

In the present paper we set up a semiclassical approx
tion which helped us clarify, by means of several simp
examples, the rich variety of time scales in the quantum
main. This is one of the reasons why constructing a brid

FIG. 3. The exact linear entropy~full line! and the short time
linear entropy~dotted line! for the quartic two-dimensional har
monic oscillator.
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between classical and quantum mechanics is so difficult.
whole structure of both theories is completely different a
several nonclassical phenomena should be attributed to
linear structure of the Hilbert space, a feature which is abs
in the classical context. Application of this present develo
ment in chaotic situations is in order.

ACKNOWLEDGMENTS

We would like to thank R. M. Angelo and K. Furuya fo
the helpful discussions and E. H. M. Ferreira for helpi
with the computational problems. We also would like
thank the Conselho Nacional de Desenvolvimento Cientı´fico
e Tecnolo´gico ~CNPq! for financial support.

APPENDIX

First we setm50, then we getuâ tu25ua0u2. We want to
extract the\ independent contribution to Tr(ra

2). For this
purpose it suffices to sum all contribution coming from t
second order of the expansion of the cosine function. T
for the first order we findD050 then we have:

Tr@ra
2 #5(

q,n
e22ub0u2expH 2ua0u2 (

m50

@2tl\2~n2q!#

~2m12!!
2m12J

3
ub0u2n

n!

ub0u2q

q!

.(
q,n

e22ub0u2exp@24ua0u2t2l2\4~n2q!2#

3
ub0u2n

n!

ub0u2q

q!
.

Let us examinee the following function:

f ~x,y!5(
n,p

~xa!n~ya!p

n! p!
5e(x1y)a.

If we apply once the differential operator (x]/]x2y]/]y)
we find

S x
]

]x
2y

]

]yD f ~x,y!5a~x2y! f ~x,y!.

Then we can see that

S x
]

]x
2y

]

]yD f ~x,y!5(
n,p

~n2p!~xa!n~ya!p

n! p!

5a~x2y!e(x1y)a.

So for a5ub0u2 we get

(
n,p

~n2p!2~ ub0u2!n~ ub0u2!p

n! p!
52ub0u2e2ub0u2.
03621
e
d
he
nt
-

n

Let

D5S x
]

]x
2y

]

]yD ,

a5ub0u2,

s5x1y,

d5x2y,

we haveDs5d andDd5s, and also

Deas5adeas,

D„g~s,d!eas
„5@adg~s,d!1D„g~s,d!…#eas.

The general result is thenDneas5gn(s,d)eas, with

g0~s,d!51,

g1~s,d!5ad,

g2~s,d!5a2d21as,

g3~s,d!5a3d313a2ds1ad,

g3~s,0!50,

g4~s,d!5a4d416a3d2s14a2d213a2s21as,

A

If we only consider the smallest term in power of\ at
each application of the operatorD, we can obtain an approxi
mated linear entropy. As we will see, this will give us an\
independent linear entropy. By doing this we have

g4~s,d!'a4d416a3d2s13a2s2,

g5~s,d!'a5d5110a4d3s115a3ds2,

g6~s,d!'a6d6115a5d4s145a4d2s2115a3s3,

g7~s,d!'a7d7121a6d5s1105a5d3s21105a4s3d,

g8~s,d!'a8d8128a7d6s1210a6d4s21420a5s3d2

1105a4s4

For x5y51 we can see that
4-9
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g0~s,d!5150!! ~2a!0,

g2~2,0!52a51!! ~2a!1,

g4~2,0!'3~2a!253!! ~2a!2,

g6~2,0!'5!! ~2a!3,

g8~2,0!'7!! ~2a!4.

Then we find

(
n,p

~n2p!2m~ ub0u2!n~ ub0u2!p

n! p!

'~2m21!!! ~2ub0u2!me2ub0u2.
ria

03621
For the trace we get

Tr~ra
2 !'(

q,n
e22ub0u2exp@24uâ0u2t2l2\4~n2q!2#

3
ub0u2n

n!

ub0u2q

q!

'11 (
k51

`
~2k21!!!

k!
~22uâ0tl\2b0u2!k.

As (11u)21/25121!!u/1!213!!/2!(u/2)21•••, then
finally we get

Tr~ra
2 !'

1

A114ua0tl\2b0u2
5

1

A114uScls
a t2\2l2Scls

b u
~A1!
e
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